Het Crigler-Najjar syndroom

Een haalbaarheidsstudie naar een draagbaar lichttherapie apparaat.

(Bron foto: http://www.criglernajjar.com/Photos/photos.htm)
Het Crigler-Najjar syndroom
Een haalbaarheidsstudie naar een draagbaar lichttherapie apparaat.

Een verslag in het kader van het vak management van productontwikkeling.

Universiteit Twente, Enschede, 23 juli 2007

Auteurs:
Balveren, Maarten van s0003018
Kwant, Pieter-Jan s0003336
Tuin, Max van der s0003549
Vries, Rogier de s0003638

Begeleider:
F.G.M. Kokkeler

Opdrachtgever:
P. de Vette
Voorwoord

In dit rapport hebben we geprobeerd de haalbaarheid te onderzoeken van een mobiel lichttherapie-apparaat, te gebruiken voor de behandeling van Criggler-Najjarpatiënten. Om hier een goede schatting van te kunnen maken, is kennis nodig van medische aard, specialistische kennis op het gebied van verlichting en natuurlijk enige constructietechnische kennis. Aan het begin van het project was alleen de laatstgenoemde kennis in voldoende mate aanwezig bij het team. De overige kennis hebben we ons eigen moeten maken. Gelukkig hebben we hierbij voldoende hulp kunnen vinden.

Volgens ons zijn we er in geslaagd een rapport te produceren dat zeer nuttig zal kunnen blijken in het vervolg van het proces van het ontwerpen van een mobiel lichttherapie-apparaat.

Graag willen we hier van de gelegenheid gebruik maken een aantal mensen te bedanken die ons erbij geholpen hebben dit resultaat te bereiken.

Ten Tweede Dhr. Ir. F. Kokkeler, onze vakdocent. Hij heeft ons vaak met zeer bruikbare tips bijgestaan en is degene geweest die ons aan de opdracht geholpen heeft.

Vervolgens Dr. H. Vreman, verbonden aan Stanford University en ontwerper van een prototype mobiel lichttherapie-apparaat. Hij heeft ons voorzien van zeer waardevolle informatie aangaande de behandeling van Criggler-Najjarpatiënten. Daarnaast heeft zijn prototype als inspiratiebron gediend voor onze eigen ideeën.

Dan Dhr. H. van Weelden, verbonden aan het UMC te Utrecht. Ook van hem mochten we zeer nuttige informatie ontvangen aangaande gebruikelijke behandelwijzen voor CN-patiënten.

Rest ons nog de wens uit te spreken dat ons rapport een bijdrage zal leveren in het verbeteren van de situatie van Criggler-Najjarpatiënten.
Samenvatting

Het Crigler-Najjar Syndroom (CNS) is een leveraandoening. CNS patiënten zijn gebaat bij (vaak langdurige) lichttherapie, hiervoor worden nu grote apparaten gebruikt die nog het meest lijken op een zonnehemel. Hierin zijn grote TL-buisachtige lampen verwerkt. Door de omvang en fragiliteit zijn huidige apparaten niet of beperkt mobiel, waardoor CNS patiënten nauwelijks lang op vakantie kunnen. Doel van dit rapport is een haalbaarheidsstudie te doen naar een lichttherapie apparaat dat wel draagbaar is.

In dit rapport is voor de belichting uitsluitend gekeken naar LED’s. LED’s hebben een relatief een hoog rendement en zijn robuuster dan conventionele lampen. Geconcludeerd kan worden dat technisch gezien het ontwerp van een mobiele lichtbron goed mogelijk is met LED’s. De benodigde LED’s die als lichtbron dienen bestaan en zijn op een manier te monteren dat een behandeling mogelijk is, in het verslag zijn hiervoor dan ook enkele voorstellen gedaan.

Verder is in dit rapport gekeken naar mogelijke concepten voor een draagbaar lichttherapie apparaat. Aanbevolen wordt om het “stretchbed concept” verder te ontwikkelen, eventueel in samenwerking met een gespecialiseerd ingenieursbureau. Het concept bestaat uit een standaard lichtgewicht mobiel stretchbed, waarbij het laken vervangen wordt door een lichtdoorlatende mat. Op een veilige afstand onder deze mat kunnen dan de LED’s gemonteerd worden.

De belangrijkste argumenten voor een stretchbed met LED’s zijn de lage ontwikkelingskosten en de robuustheid. Tevens is bij dit concept technisch het makkelijkst haalbaar om de LED’s te koelen (dit is noodzakelijk), omdat deze los liggen van het slaapoppervlak van de gebruiker. Aangezien er veel LED’s nodig zijn (tussen de 8000 – 10 000) dient er ook nog aandacht te worden besteed aan de bevestiging van de LED’s. Het is waarschijnlijk technisch haalbaar om LED’s op een flexibele mat te monteren. Deze mat kan dan opgerold worden waardoor een ingepakte toestand een mobiel product overblijft.

Uit de kostenanalyse is gebleken dat na optimalisatie door een ingenieursbureau de kostprijs van het stretchbed-concept op € 7300,- uitkomt. Dit is gebaseerd op een productie (en afname) van 20 stuks. Tevens kwam naar voren dat de kosten van de LED’s het grootste deel uitmaken van de kostprijs. Veel winst kan dus gehaald worden uit LED optimalisatie.
Inhoudsopgave

VOORWOORD .. 2

1 INLEIDING ... 5

2 EISEN EN WENSEN ... 6

3 CONCEPTEN ... 8
 3.1 LUCHTBED .. 8
 3.1.1 Voordelen ... 9
 3.1.2 Nadelen ... 9
 3.2 GELMATRAS ... 11
 3.2.1 Voordelen ... 11
 3.2.2 Nadelen .. 11
 3.3 KLAMBOE .. 12
 3.3.1 Voordelen ... 12
 3.3.2 Nadelen .. 13
 3.4 STRETCHER ... 14
 3.4.1 Voordelen ... 14
 3.4.2 Nadelen .. 15

4 KOSTENANALYSE ... 16
 4.1 ALGEMENE TOELICHTING KOSTENSPECIFICATIE ... 16
 4.2 VERGELIJKING KOSTEN VERSCHILLENDE CONCEPTEN ... 18

5 CONCEPTKEUZE ... 19
 5.1 BESCHRIJVING CRITERIA .. 19
 5.2 ONDERBOUWING KEUZE .. 19

6 CONCLUSIE .. 21

7 AANBEVELINGEN ... 22
 7.1 ALGEMEEN .. 22
 7.1.1 LED’s .. 22
 7.1.2 Montage LED’s .. 22
 7.1.3 Mobilitéit ... 23
 7.1.4 Thermisch ... 24
 7.2 STRETCHER SPECIFIEK ... 24

8 REFERENTIELIJST ... 25

BIJLAGEN .. 26

BIJLAGE 1. AFWEGINGEN LED-LICHT VS TL-LICHT ... 27

BIJLAGE 2. KOSTENSPECIFICATIE LUCHTBED .. 30
1 Inleiding

In Nederland lijdt een handje vol mensen aan het syndroom van Criggler-Najjar. Wereldwijd lijden enige honderden mensen aan deze ziekte. Het syndroom van Criggler-Najjar is een leveraandoening. De lever maakt onvoldoende aan van een stof die helpt bij de afbraak van bilirubine, wat op zijn beurt een bijproduct van de afbraak van rode bloedlichaampjes is. Een te hoge concentratie van bilirubine in het bloed is levensgevaarlijk.

Bilirubine wordt door licht van een bepaald spectrum afgebroken tot wateroplosbare stoffen, die het lichaam via de urine kan uitscheiden. Om deze reden ontvangen Criggler-Najjar-patiënten lichttherapie. Dit houdt in dat ze, afhankelijk van de ernst van hun ziekte, één tot 12 uur per dag verblijven onder speciale blauwe lampen. De installaties die hiervoor worden gebruikt hebben nog het meest weg van zonnehemels. Ze zijn groot en zwaar, en daardoor nauwelijks verplaatsbaar. Het probleem dat de patiënten door deze behandelmijze ondervinden is dat ze nooit langer dan enige uren van huis kunnen. Een weekend logeren of enige dagen kamperen zijn onmogelijk.

Om aan deze problematiek een eind te maken is er een mobiel apparaat nodig dat de logge lichttherapieapparaten kan vervangen. Het apparaat moet klein van formaat zijn en licht in gewicht. Het moet voldoende comfort bieden en moet gebruiksvriendelijk zijn. Om aan deze eisen te voldoen zouden LED’s een uitkomst kunnen bieden.

Probleem bij de ontwikkeling van een dergelijk apparaat is dat de verwachte afzet zeer laag is. Dit heeft tot gevolg dat de kosten die gemaakt worden bij de ontwikkeling van het product terugverdiend moeten worden door de verkoop van een gering aantal producten. Hierdoor bestaat het gevaar dat de kosten per product onaanvaardbaar hoog worden.

In dit verslag volgt een haalbaarheidsstudie voor het bovenbeschreven apparaat. Er wordt gekeken naar de mogelijkheid om, met gebruikmaking van LED’s, een apparaat te ontwikkelen dat technisch en financieel levensvatbaar is. Het uitgangspunt van dit rapport is niet om een product te ontwikkelen dat rijp is voor productie, maar om een schatting te maken van de kansen van het product als het in ontwikkeling zal worden genomen. Er zal een aantal concepten besproken worden, waarvan de voor- en nadelen op een rijtje zullen worden gezet. Vervolgens worden aanbevelingen gedaan ten aanzien van het concept dat de beste kansen toegedicht wordt. Hierbij moet in ogenschouw genomen worden dat alle concepten gebruik maken van LED’s. LED’s hebben een aantal voordelen, maar dit betekent niet dat alternatieve lichtbronnen zoals fluorescentielampen geen oplossing zouden kunnen bieden.
2 Eisen en wensen

Belangrijk voor een haalbaar ontwerp zijn de eisen en wensen van de gebruiker. Een product kan technisch kwalitatief goed zijn, maar wanneer niet aangesloten wordt op de wensen en eisen vanuit de gebruiker dan zal het product waarschijnlijk geen succes zijn.

Om duidelijkheid te krijgen is een enquête opgesteld voor de toekomstige gebruikersgroep. De enquête is in bijlage 5 opgenomen. Het uitvoeren van een grootschalige enquête onder de gebruikersgroep is op grond van sociale overwegingen niet mogelijk gebleken. Een enquête over een mobiel belichtingsapparaat zou namelijk te hoge verwachtingen kunnen wekken die mogelijk niet waargemaakt kunnen worden, bovendien wordt de patiëntengroep al veelvuldig belast met diverse onderzoeken. In goed overleg met de opdrachtgever hebben twee patiënten de enquête ingevuld. De uitkomsten hiervan zijn aangevuld met de wensen en eisen vanuit de opdrachtgever tot een compleet pakket van eisen en wensen.

Het totale pakket van eisen en wensen is het volgende:

Eisen omgeving

- Elektriciteit aanwezig, AC 110-240V, capaciteit voorziening minimaal 1500W.
- Beschutting van apparaat tegen vocht.
- Voldoende warmte afvoermogelijk in ruimte aanwezig om excessief opwarmen van ruimte te voorkomen.
- Vlakke ondergrond

Veiligheidseisen aan apparaat

- Lage spanning op delen in direct contact of nabijheid van gebruiker.
- Voldoende afscherming spanningsvoerende delen
- Aarding van metalen delen
- Geen scherpe delen of rechte hoeken aan product
- Voldoende stevigheid, product moet in staat zijn om een volwassen persoon te kunnen dragen, maximaal 110 kg belasting.
- Overige CE eisen voor product veiligheid

Handelbaarheid

- Gedemonteerd/ingeklapt niet groter dan maximaal 50x30x40 cm. Vanuit gebruikersoogpunt het liefst zo compact en handzaam mogelijk.
- Indien echt noodzakelijk eventueel indelen gesplitst.
Het Crigler-Najjar syndroom

Universiteit Twente

- Gewicht maximaal: 15kg. Ook hier geldt dat de gebruiker het liefst een zo licht mogelijk product ziet.
- Opbouwtijd maximaal 10 minuten en geen ingewikkelde handelingen

Behandeling

- Maximaal acceptabele extra behandeltijd: 1-2 uur uiteraard echter het liefst geen extra behandeltijd of juist kortere behandeltijd.
- Uitgaan van belichting van één kant. Voor patiënten die slechts kort onder de lamp moeten is behandeling van twee kanten ook acceptabel, echter bij patiënten die lange behandeltijd vereisen (type 1) is dit niet wenselijk.
- Voldoende comfort bieden aan de gebruiker om het product tot 14 uur aaneengesloten te kunnen gebruiken.

Kosten

Als leidraad: maximaal € 5000, echter sterk afhankelijk van: (deels)vergoeding door verzekering, geboden comfort, totale situatie afdekt af alleen mobiele situatie.
3 Concepten

In dit hoofdstuk worden de technische aspecten en de gebruiksaspecten van de verschillende concepten toegelicht. Per concept wordt eerst een beschrijving gegeven en daarna een opsomming van de voor- en nadelen.

3.1 Luchtbed

Een mogelijke oplossing om de mobiliteit van CNS patiënten te vergroten bestaat uit een luchtbed, uitgerust met een groot aantal blauwe LED’s die de lichtbron vormen voor de lichttherapie. Het luchtbed bestaat dan uit een transparante bovenlaag, waarop de patiënt ligt. De overige zijden van het bed zijn niet doorzichtig en eventueel aan de binnenzijde voorzien van een reflecterende laag. De bodem van de matras is voorzien van een groot aantal (enige honderden) LED’s. De LED’s zijn zogenaamde “surface mount LED’s”, wat zoveel betekent als in de ondergrond ingebedde LED’s. Het elektrische systeem dat de LED’s van stroom moet voorzien kan ingebed worden in het materiaal van het bed. Voeding en omvormer zullen los van het bed komen te staan. Vanwege het grote aantal LED’s zal het luchtbed van koeling voorzien moeten worden. Het luchtbed zal om en nabij de 10.000 LED’s moeten bevatten om een voldoende lichtsterkte te realiseren. Dit zal resulteren in een stroomverbruik van de LED’s van ongeveer 700 W. Dit is een waarde die zeker door een gewoon lichtnet moet kunnen worden geleverd.

Figuur 3.1. Een impressie van het luchtbed
3.1.1 Voordelen

Gemak
Een heel groot voordeel van dit concept is het gebruiksgemak. Het opblazen van een luchtbed is een handeling die voor een ieder vanzelfsprekend is en die in ieder geval hand in hand gaat met kamperen of uit logeren gaan. Het betekent geen extra inspanning. Als de verdere aansluiting van het lichttherapie luchtbed uit niet meer bestaat dan het aansluiten van de voeding op het bed en lichtnet en het aanzetten ervan blijft de inspanning die de lichttherapie vergt tot een minimum beperkt.

Draagbaarheid
Als we er vanuit gaan dat een kampeerder of logee in elk geval met een luchtbed op pad gaat, is de draagbaarheid van het lichttherapie luchtbed uitstekend te noemen. Naast het luchtbed zelf is niet meer nodig dan de losse voeding. Hierbij moet wel worden opgemerkt dat de LED’s in de bodem van het luchtbed ervoor zorgen dat het opgerolde luchtbed iets groter is dan een standaard luchtbed. Het gewicht van het bed zal zeker acceptabel zijn, zolang de CNS patiënt niet van plan is met het bed in een rugzak te gaan hiken.

Comfort
Het comfort van een luchtbed is goed. Een nadeel van het gebruik van een luchtbed voor lichttherapie is dat de patiënt zonder laken met de blote huid op het bed moet liggen, dit kan zeker in warme nachten onaangenaam zijn. Het materiaal van de toplaag van het luchtbed zal dan ook zo gekozen moeten worden dat dit ongemak tot een minimum beperkt blijft. Aangezien de bestraling van onderen plaatsvindt, kan de patiënt wel een deken gebruiken, dit verhoogt het comfort natuurlijk aanzienlijk.

3.1.2 Nadelen

Koeling
Het eerste probleem dat zich voordoet bij het gebruik van het lichttherapie luchtbed is de koeling. Aangezien de LED’s zich in het inwendige van het luchtbed bevinden, zullen zij de lucht in het luchtbed opwarmen, dit leidt tot een hogere druk in het bed en tot een onaangenaam warm bed. Er zal in de verdere ontwikkeling van het bed dus een koelsysteem moeten worden toegepast, hetzij actief, hetzij passief. Waarbij een groot nadeel van een actief systeem geluidsproductie kan zijn.

Lekkage
Een gevaar dat altijd aanwezig is bij het gebruik van een luchtbed is het lek raken ervan. In het gunstige geval kan het lek hersteld worden maar als dat niet (meer) mogelijk is, is het luchtbed afgeschreven. Bij een normaal luchtbed is dit een vervalende, maar overkomelijke kwestie. Bij een lichttherapie luchtbed, dat door
de aanwezige techniek aanzienlijk meer zal kosten is het probleem veel ernstiger.

Kwetsbaarheid
De LED’s in het lichttherapie luchtbed zijn opgenomen in flexibel materiaal, dit om de draagbaarheid van het geheel te vergroten. Dit heeft tot gevolg dat de LED’s ook bloot kunnen komen te staan aan relatief grote krachten. Hierbij moet worden gedacht aan de kracht die optreedt als iemand zijn knie op het niet opgeblazen bed plaatst. Het mag niet zo zijn dat een dergelijk voorval ineens het einde van de levensduur van het bed betekent. Daarom zal een goede balans moeten worden gevonden tussen duurzaamheid en flexibiliteit van het luchtbed. Een mogelijke oplossing voor dit probleem is door te werken met relatief rigide secties van de bodem, met daarin opgenomen de LED’s, verbonden door flexibele stroken die het opvouwen of orollen van het luchtbed mogelijk maken.
3.2 Gelmatras

Een conceptoplossing is een gelmatras met daarin geïntegreerd een aantal LED’s. De gel-matras bestaat uit een transparante gel met op de bodem blauwe surface mount LED’s. Deze LED’s moeten flexibel gemonteerd worden zodat het volledige bed opgerold kan worden. De dikte van de gellaag ligt tussen de 2 en 5 cm, dit betekent dat het in opgerolde toestand eenvoudig te transporteren zal zijn. Het gelmatras zal er ongeveer hetzelfde uitzien als het luchtbed, zie figuur 3.1.

Evenals in het luchtbed zal de belichting van onderen plaatsvinden, hierbij wordt het hoofdgedeelte van de matras vrijgehouden van LED’s om belichting van ogen te voorkomen. Niettemin zullen er ook nabij de 10.000 LED’s nodig zijn, wat een goede koeling noodzakelijk maakt.

3.2.1 Voordelen

Comfort
Een gelmatras heeft een goede ligvorm. In tegenstelling tot een luchtbed of waterbed verandert de vorm niet als er iemand op gaat liggen. Dit zorgt voor een goed ligcomfort. Ook omdat de belichting van onderen plaatsvindt, kan een patiënt een deken gebruiken.

Op- en afbouw
Het enige dat bij de opbouw gedaan hoeft te worden is de matras uitrollen en de voeding en koeling aan te sluiten. Makkelijker dan dit kan waarschijnlijk niet. Een groot voordeel is ook het afbouwen; het enige dat gedaan hoeft te worden is de matras op te rollen. Dit is een groot voordeel ten opzichte van andere concepten, waarbij het bijvoorbeeld nog nodig is het bed leeg te laten lopen.

Robuustheid
Als je op reis gaat krijgt je bagage nog al eens wat te verduren. Het voordeel van de gelmatras is dat de belangrijkste onderdelen, namelijk de LED’s, stevig ingebouwd zijn in de matras. Ook is er geen kans op lekkage.

3.2.2 Nadelen

Warmteafvoer
Omdat de LED’s verwerkt zijn in de gel laag kan de warmteafvoer problematisch worden. De gellaag heeft namelijk een isolerende werking, waardoor de warmteafvoer een stuk minder is dan bij bijvoorbeeld het luchtbed. Naar alle waarschijnlijkheid zal een actief koelsysteem nodig zijn, en het nadeel hiervan is hinderlijke geluidsproductie.
3.3 Klamboe

Bij de huidige belichting van CNS patiënten wordt vaak gebruik gemaakt van een zonnehemel met speciale lampen. Het grote nadeel hiervan is dat dergelijke apparaten groot zijn en daardoor onhandig mee te nemen. Tevens zijn de lampen erg fragiel waardoor vervoer lastig is.

De oplossing van deze problematiek kan gevonden worden in de klamboe-zonnehemel. Dit apparaat bestaat uit een aantal eenvoudig te positioneren bogen van een lichtgewicht materiaal met daartussen een doek met een aantal blauwe LED's. Tussen de bogen kan eenvoudig een conventioneel luchtbed geplaatst worden. Hierdoor wordt dus als het ware een mobiele zonnehemel gecreëerd.

![Figuur 3.2. Impressie van de LED-klamboe](image)

3.3.1 Voordelen

Goede koeling
Omdat de LED’s losgekoppeld zijn van het bed is er voldoende luchtstroom het thermisch verlies van de LED’s af te voeren. Er is waarschijnlijk geen actief koelsysteem nodig, hierdoor is er geen extra geluidsontwikkeling en zal de patiënt beter kunnen slapen.

Lage ontwikkelkosten
Omdat de elektronica los staat van het bed en ophangspanten hoeft er geen ingewikkeld systeem ontwikkeld te worden voor koeling en andere veiligheidseisen. Omdat het LED licht rechtstreeks de patiënt belicht hoeft er ook geen studie gedaan te worden naar de doorlaatbaarheid van LED licht zoals dat
bij de gelmatras en luchtbed wel noodzakelijk is. Wel moet een methode ontwikkeld worden om de noodzakelijke LED’s te monteren in de klamboe.

3.3.2 Nadelen

Comfort
De patiënt ligt bij dit apparaat in een kleine tunnel van licht, hierdoor is het lastig om tijdens de slaap te bewegen of om te draaien. Tevens kan een patiënt geen deken gebruiken, iets wat als erg onplezierig wordt beschouwd.

Ruimte
Omdat er een systeem van spanten nodig zal het lastig zijn om dit product te gebruiken op plaatsen waar weinig ruimte beschikbaar is, bijvoorbeeld in een klein koepeltentje. Ook in ingeklapte toestand zal het apparaat meer ruimte innemen dan de andere concepten, aangezien er meer losse delen zijn. Dit hoeft echter geen probleem te zijn wanneer een goede productoptimalisatie wordt gedaan.
3.4 Stretcher

Het concept wat hier besproken wordt gaat net zoals het eerder besproken concept van het luchtbed uit van lichttherapie van één zijde van het lichaam. Deze beschijning zal geschieden door een mat met LED-lichten, welke onder een stretcher zijn geplaatst. De stretcher heeft een lichtdoorlatend ligvlak waar het blauwe licht doorheen kan vallen.

Verder zijn de elektronica en dergelijke identiek aan die van het eerder besproken luchtbed, dus hier zal verder niet op in worden gegaan.

Figuur 3.3. Een impressie van de lichttherapie stretcher

3.4.1 Voordelen

Bewezen concept
Het grootste voordeel van dit concept is dat het een bewezen concept is. Er bestaat reeds een werkend prototype van een mobiel lichttherapie apparaat dat op deze bouw gebaseerd is. Enige verschil is dat hier gebruik wordt gemaakt van een mat van LED’s, en geen series LED-bakken die onder de stretcher liggen.

Lage ontwikkelingskosten
Aangezien een stretcher een doorontwikkeld product is, is er voor de opbouw nauwelijks sprake van ontwikkelingskosten. Er kan gewoon gebruik worden gemaakt van een commercieel beschikbare stretcher met als enige aanpassing een lichtdoorlatend ligvlak. Enige grote kostenpost is het matje van LED’s die onder de stretcher komt te liggen. Echter zijn deze specifieke kosten gelijk als bij de overige concepten, waar dan nog ontwikkelingskosten voor de opbouw bij komen.
Snelle opbouw
Waar bij het luchtbed duidelijk een tijdje gewacht moet worden tot het volledig opgeblazen is, is de opbouwtijd van de stretcher vrij kort. Drie keer vouwen, matje van LED’s neerleggen, stekker in het stopcontact en het is klaar.

Goede koeling
De open bouw van een stretcher zorgt ervoor dat de warmte die geproduceerd wordt door de LED’s goed afgevoerd kan worden.

3.4.2 Nadelen

Gewicht en omvang
Grootste nadeel van een stretcher is dat het ingeklapt niet zo heel klein kan worden. In ieder geval een stuk groter dan bijvoorbeeld een luchtbed, en ook het gewicht is hoger door de metalen onderdelen..

Comfort
Comfort blijft een subjectieve zaak, het ene concept zal de voorkeur hebben bij een groep mensen, en bij een ander concept zal dit ook zo zijn. Als men echter globaal kijkt naar voorkeuren, zal een meerderheid van de mensen een luchtbed (bijvoorbeeld) prefereren boven een stretcher.
4 Kostenanalyse

De kostenspecificatie is erop gebaseerd om een totaalbeeld van de kosten te krijgen alsmede een indicatie te geven voor de kostprijs. Om geen zaken over het hoofd te zien wordt de kostenspecificatie van het proces van productontwikkeling chronologisch behandeld. Allereerst wordt algemeen toegelicht waar de kosten op gebaseerd zijn, waarna een vergelijking wordt gemaakt tussen de verschillende concepten.

4.1 Algemene toelichting kostenspecificatie

Vaste variabelen

Bij de berekeningen aan de verschillende concepten zijn er een aantal zogenaamde vaste variabelen. Dit zijn kosten die ongeacht het concept per eenheid hetzelfde blijven. In tabel 4.1 zijn deze benoemd.

<table>
<thead>
<tr>
<th>Kosten</th>
<th>Bedrag</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productontwikkelaar</td>
<td>100</td>
<td>€/uur</td>
</tr>
<tr>
<td>Assemblage medewerker</td>
<td>50</td>
<td>€/uur</td>
</tr>
<tr>
<td>LED</td>
<td>0.6</td>
<td>€/stuk</td>
</tr>
<tr>
<td>Voeding</td>
<td>50</td>
<td>€/stuk</td>
</tr>
<tr>
<td>Overige noodzakelijke</td>
<td>50</td>
<td>€/stuk</td>
</tr>
<tr>
<td>elektronica</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4.1. Lijst van vaste variabelen.

De verwachte afzet is gesteld op 20 producten.

Stap 1: ontwikkelkosten [totaal]

De kostenspecificatie van stap 1 is erop gebaseerd dat de opdrachtgever met een gegeven concept een overeenkomst aangaat bij een ingenieursbureau. Het ingenieursbureau gaat zich dan toespitsen op de volledige uitkristallisatie van het concept gebaseerd op de aanbevelingen die voortkomen uit de haalbaarheidsstudie zoals gedaan in dit onderzoek.

De ontwikkelkosten zijn zodoende opgebouwd uit de kosten per uur van de productontwikkelaar vermenigvuldigd met de geschatte benodigde tijd. De kosten per uur van de productontwikkelaar bestaat uit het bruto uurloon en bijkomende infrastructurele kosten.

Uit de praktijk blijkt dat de productontwikkelaar ook na de ontwerpfase een aantal uren per week betrokken blijft bij het verdere realisatietraject. Deze bijkomende kosten worden meegenomen in de ontwikkelkosten.
Stap 2: materiaalkosten [per product]

Afhankelijk van het concept zijn er verschillende materialen nodig. Voor alle concepten geldt dat de materiaalkosten in ieder geval bestaan uit:

kosten van LEDs
kosten van (flexibele) fitting LEDs
kosten van bijkomende elektronica zoals voeding, kabels en eventueel actieve koeling
Kosten van bed waarop patiënt zal liggen

Stap 3: assemblagekosten [product]

De assemblagekosten bestaan uit het uurloon van de assemblage medewerker maal het aantal het aantal uur dat deze bezig is met het assembleren van één product. De assemblagekosten kunnen verschillen per concept.

Stap 4: marktklaar maken [totaal]

 Alvorens het product op de markt komt is het noodzakelijk dat het product getest wordt. De test zal uitgevoerd worden onder leiding van het ingenieursbureau en daarop zijn de kosten dan ook gebaseerd.
4.2 Vergelijking kosten verschillende concepten

![Diagram Vergelijking kosten](image)

Figuur 4.1. Een kostenvergelijking van de concepten

In figuur 4.1 is te zien dat de ontwikkelkosten en materiaalkosten van de verschillende concepten hoog liggen, met name de materiaalkosten. Alle concepten bevatten ongeveer evenveel LED's en de kosten van de LED's zijn dominant. Hierdoor zit er relatief weinig verschil in materiaalkosten tussen de verschillende concepten.

De ontwikkelkosten zijn bij het lucht- en gelbed het hoogst. Dit komt omdat voor de inbedding en koeling van de LED's veel onderzocht en berekend moet worden.

De assemblagekosten en kosten voor het marktklaar maken voor alle concepten praktisch hetzelfde.

In bijlagen 1 tot en met 4 zijn de specificaties van de verschillende concepten te vinden.
5 Conceptkeuze

In dit hoofdstuk zal uit de diverse concepten een definitief concept gekozen worden. Gelet zal hierbij worden op een aantal belangrijke criteria, die per concept behandeld zullen worden en die onderling ook weer gewogen zullen worden. Dit om tot een gefundeerde afweging te komen.

5.1 Beschrijving criteria

De concepten zullen beoordeeld worden aan de hand van de onderstaande vier criteria:

- Afmeting (in ‘transporttoestand’; bijvoorbeeld ingeklapt, opgerold) en gewicht. De score van dit criterium wordt enkel geteld, aangezien alle concepten in redelijke mate als mobiel worden verondersteld.

- Gebruikersgemak. Hiermee wordt de opbouw(tijd) van het apparaat bedoeld. Deze score wordt dubbel geteld, omdat

- Comfort. Het comfort is erg belangrijk, daarom wordt dit criterium driedubbel meegeteld. Zaken die meespelen bij het comfort zijn onder andere het lig-comfort en geluidsniveau van de concepten.

- Prijs. Het is gebleken dat de gewenste prijs van het apparaat lager ligt dan de geschatte prijs (zie de hoofdstukken Eisen en wensen en Kostenanalyse) waardoor de prijs doorslaggevend kan zijn. Hierom wordt dit criterium ook driedubbel geteld.

5.2 Onderbouwing keuze

De conceptkeuze zal geschieden aan de hand van de hierboven gegeven criteria. Deze criteria worden hieronder per concept aangeduid met een waardering, van één plus tot drie plussen. Tevens wordt de weegfactor aangeduid per criterium, welke vermenigvuldigd met het aantal plussen leidt tot een ‘score’ per criterium. Gesommeerd resulteert dit in een ‘totaalscore’ van het concept.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Afmeting:</th>
<th>Gebruikersgemak:</th>
<th>Comfort:</th>
<th>Prijs:</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luchtbed</td>
<td>+++ 1 x</td>
<td>++ 2 x</td>
<td>++ 3 x</td>
<td>++ 3 x</td>
<td>19</td>
</tr>
<tr>
<td>Gelmatras</td>
<td>+++ +++</td>
<td>++</td>
<td>++ +</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Klamboe</td>
<td>+ +++</td>
<td>+</td>
<td>+ ++</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Stretcher</td>
<td>++ +</td>
<td>++</td>
<td>++ +++</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Tabel 5.1. Totstandkoming ‘score’ per concept
Zoals te zien is in tabel 5.1, is het stretcher concept een goede ‘all-rounder’ qua eigenschappen, en is hier het beste concept omdat het concept de laagste prijs heeft.
Het is lastig om één concept te kiezen uit een aantal concepten. Hier helemaal, omdat het luchtbed, de gelmatras en de stretcher dicht bij elkaar liggen qua score. Het financiële aspect geeft hier duidelijk de doorslag, hoewel dit voor sommige patiënten helemaal niet aan de orde is. Als iemand erg veel geld overheeft voor een comfortabel, eenvoudig te bedienen apparaat, zou hij of zij gaan voor de gelmatras. Echter in ogenschouw nemend dat de behandeling thuis al genoeg geld kost en het nog maar de vraag is of de verzekering wil bijspringen in de aanschaf van zo een apparaat, is het gerechtvaardigd om het stretcher-concept te kiezen als definitief concept.
6 Conclusie

Geconcludeerd kan worden dat technisch gezien het ontwerp van een mobiele lichtbron goed mogelijk is. De benodigde LED’s die als lichtbron dienen bestaan en zijn op een manier te monteren dat een behandeling mogelijk is, in het verslag zijn hiervoor dan ook enkele voorstellen gedaan. Het rendement van een LED ten opzichte van een fluorescentielamp valt echter tegen, een fluorescentielamp heeft een rendement van 15-25% terwijl een blauwe LED een rendement van 25-35% heeft. Het grootste voordeel van het gebruik van LED’s is dan ook te vinden in een betere handelbaarheid dan breekbare fluorescentielamp, de betere handelbaarheid biedt meer ontwerp mogelijkheden. In de bijlagen is een meer uitgebreide afweging te vinden tussen LED’s en TL’s.

Een commercieel bedrijf is waarschijnlijk moeilijk te interesser en om een dergelijk product te ontwikkelen. Dit vanwege de hoge kostprijs die met een dergelijk ontwikkeling gepaard gaat en over een relatief klein aantal producten moet worden terug verdiend, dit levert een erg hoge kostprijs op. Naast de normale ontwikkelingskosten komen nog kosten voor de certificering, dit omdat een medisch product aan hoge veiligheidseisen moet voldoen en de werking medisch gezien aangetoond moet worden. Deze certificering is noodzakelijk om dergelijk product eventueel vergoed te krijgen van een verzekering en product aansprakelijkheid te voorkomen.

Wanneer geen bedrijf is te interesser en in het ontwikkelen van een dergelijk product, dan valt te overwegen zelf tot ontwikkeling over te gaan. Een dergelijke ontwikkeling kan het beste plaats vinden bij een ingenieursbureau. Een ingenieursbureau met expertise op het gebied van licht en biomedische product ontwikkeling heeft hierbij mogelijk een voorkeur.

Het behoort tot de mogelijk een dergelijk bureau een optimalisatie van een reeds bestaand ontwerp te laten uitvoeren, voordeel hiervan is dat al een duidelijk eindproduct voor ogen is en daardoor het ontwerp traject sneller te doorlopen is met lagere kosten.

Bijvoorbeeld het stretcher concept is hiervoor bijzonder geschikt, dit concept is al reeds een keer gebouwd en aan die versie is qua formaat en opbouw tijd genoeg te optimaliseren tot een beter bruikbaar product. Bij de aanbevelingen is daarom een gedeelte opgenomen waarin specifiek op het Stretchere concept wordt ingegaan.

Bij ontwikkeling van een nieuw product is het verstandig met een duidelijke product beschrijving hoe meer het eindproduct voor ogen is hoe koper het ontwikkelingstraject is uit te voeren. Een eerste globale beschrijving van waaraan dit product zal moeten voldoen is in de aanbevelingen opgenomen.
7 Aanbevelingen

7.1 Algemeen

In het deel algemeen van de aanbevelingen worden een aantal aanbevelingen gegeven die van toepassing zijn op alle concepten.

7.1.1 LED’s

Uit de kostenraming van het product blijkt, dat de LED’s een zeer aanzienlijk deel van de kosten gaan uitmaken. Het zou dan ook zeer de moeite waarde kunnen blijken om enige tijd en moeite te steken in het optimaliseren van het aantal en de plaatsing van de LED’s. In de bijlagen is een eerste aanzet hiertoe gegeven, met een afweging tussen LED’s en TL’s. Als door een zeer nauwkeurige berekening van het benodigde licht en een daarop aangepaste plaatsing van de LED’s het aantal LED’s kan worden gereduceerd, levert dit een besparing op in de materiaalkosten. Winst zou wellicht te behalen zijn door onder bepaalde delen van het lichaam de LED’s in hogere dichtheid te plaatsen dan onder andere. Bijkomend voordeel hiervan is dat een gereduceerd aantal LED’s resulteert in een lager stroomverbruik en een geringere warmteontwikkeling. Een afweging zal uiteraard gemaakt moeten worden of de gemaakte besparing op zal wegen tegen de te verwachten onderzoekskosten.

Wanneer bij het gekozen product ontwerp het gedeelte met de LED’s los te nemen is, de LED’s ook voor de dagelijkse licht therapie te gebruiken. Daarvoor kan eventueel een behuizing ontwikkeld worden waar de LED’s in vast te zetten zijn. (Die bijvoorbeeld boven het bed te plaatsen is). Groot voordeel is dan dat het duurste onderdeel van het lichttherapie, de lichtbron, dan niet dubbel aangeschaft hoeft te worden, de kans op vergoeding door de verzekeringsmaatschappij toeneemt wanneer de totale situatie bekeken wordt en mogelijk besparing op de energie kosten optreed.

7.1.2 Montage LED’s

Flexible printplaten zijn een mogelijke oplossing om de surface mount LED’s en LED’s voorzien van de traditionele pootjes van stroom te voorzien en op aan te brengen. Deze printplaat wordt gemaakt van een kunststof laag (vaak polyamide) die aan weerskanten, eventueel gebruik makende van een kleefstof, op koperen geleider laag wordt aangebracht.
Voordeel van het gebruik van flexibele printplaten is te vinden in het feit dat deze gebogen kunnen worden en dus oprolbaar zijn. De maximale buiging wordt in de praktijk bepaald door de dikte van de flexibele printplaat en is ongeveer 10 keer de maximale materiaal dikte.

Wanneer surface mount LED gebruikt worden dan kan met een één laags printplaat volstaan worden. Deze LED’s worden direct op vertinde delen van het oppervlak aangebracht. Belangrijk is te voorkomen dat het gedeelte van de printplaat waarop de LED’s zijn aangebracht te veel buigt, dit om te voorkomen dat de soldeer verbinding te veel onder spanning komt te staan en breekt of de LED zelf breekt. De beste oplossing voor dit buigingsprobleem is het gedeelte waar zich de LED’s bevinden extra te verstevigen door een extra minder flexibele laag aan te brengen, deze techniek is gangbaar. Eventueel kan buiging langs bepaalde lijnen bevorderd worden door op sommige stukken delen van het materiaal weg te nemen (gaten in printplaat) waardoor op deze plekken minder materiaal hoeft te buigen en dus eerder buiging optreed.

Bij gebruik van LED’s met de traditionele pootjes heeft gebruik van een dubbel laags flexibele printplaat de voorkeur. Hierbij wordt dan vaak gebruik gemaakt van een plated hole, dit is een extra verstevigd gat waar de pootjes doorheen gestoken worden en vervolgens vast gesoldeerd worden. Maar ook hierbij is het verstandig maatregelen tegen buiging te nemen zoals eerder beschreven. Het gebruik van LED’s met pootjes is af te raden omdat deze LED’s meer zullen uitsteken en daardoor oprollen lastiger maken.

Te verwachten aandachtpunten bij detail ontwerp zijn waarschijnlijk:

- Beperking van weerstand om voldoende vermogen over te kunnen brengen.
- Voldoende flexibiliteit voor oprollen en stijfheid bij LED’s
- Duurzaamheid bij vaak op en af rollen oprollen (vermoeiing).

7.1.3 Mobilitéit

Het apparaat is bedoeld als een mobiel apparaat, dit heeft enige implicaties. Het apparaat zal draagbaar moeten zijn. Een eventueel te gebruiken frame moet dus tot een klein formaat opgevouwen kunnen worden. Hierbij moet echter zeer goed in ogenschouw worden genomen dat de assemblage van het geheel niet te ingewikkeld mag worden. Veel van het succes van het apparaat zal afhangen van het gebruiksgemak. Er moet worden gestreefd naar beperking van het aantal losse onderdelen en logische montage van onderdelen die toch samengevoegd moeten worden. Ook legt de mobiliteitseis beperkingen op aan het gewicht van het geheel. Alle onderdelen tezamen, inclusief voeding, eventuele koeling, lichtbron en het bed zelf zullen onder een aanvaardbaar gewichtsniveau moeten blijven. Ook de
ruimte die het geheel inneemt zal zo klein mogelijk moeten worden gehouden. Om dit te bereiken kan worden gedacht aan het samenvoegen van onderdelen tot één, zoals het samenvoegen van voeding en lichtbron. Daarnaast zal enige aandacht moeten worden besteed aan de manier van opbergen. Alle onderdelen die in elkaar passen bij het opruimen, leveren een ruimtebesparing op.

7.1.4 Thermisch

Belangrijk punt bij de manier van monteren van de lichtbron is de warmte afvoer; de LED’s produceren gezamenlijk een aardig vermogen aan warmte, dit vermogen moet afgevoerd worden en hiervoor moet dan ook voldoende mogelijkheid aanwezig zijn. Confectie stroming heeft hierbij de voorkeur boven actief koelen in verband met geluidshinder. Voor confectie stromingen is het belangrijk dat voldoende luchtcirculatie mogelijk is, daarom dient ruimte onder en boven de LED’s vrij te blijven. Wanneer de ruimte rond om de LED’s toch beperkt wordt dan is het mogelijk aan te bevelen een thermische analyse van het ontwerp te maken.

7.2 Stretchert specifiek

Het stretchert specifieke deel is direct van toepassing op het stretchbed-concept, omdat aan dit concept de beste kansen toegeschreven worden om tot een goed product te kunnen uitgroeien. Dit omdat het concept zaken als een goed comfort en gebruiksgemak combineert met voordelen van constructietechnische aard. Uiteraard gelden voor andere mogelijke oplossingen soortgelijke aanbevelingen en zijn ook deze tips wellicht interessant.

Omdat het product slechts in zeer geringe oplage op de markt gebracht zal worden, stijgen de kosten per product al zeer snel als er een volledig nieuw stretchbed ontworpen moet worden. Om deze wordt aanbevolen een bestaande stretchert zodanig aan te passen dat deze geschikt is voor het gebruik tijdens de lichttherapie. Er zijn voordelige, compacte en lichtgewicht stretchers in de handel die zich prima lenen voor dergelijke aanpassing. Hierbij moet worden gedacht aan het vervangen van het textiel door een lichtdoorlatend materiaal. Vervolgens zal een soort subframe moeten worden aangebracht om de bevestiging van de LED’s mogelijk te maken. Hierbij moeten uiteraard de bovengenoemde punten van gebruiksgemak en draagbaarheid niet uit het oog verloren worden.
8 Referentielijst

De volgende personen hebben aan dit onderzoek meegewerkt:

Frans G.M. Kokkeler, Ir., Universitair Docent
Faculteit Werktuigbouwkunde
Universiteit Twente, Postbus 217, 7500 AE Enschede

Peter J.M.de Vette, Bestuurslid, Najjar Fonds
Nwe 's Gravelandseweg 82, 1406 NJ Bussum

Hendrik J. Vreman, Ph. D., Senior Research Scientist, Stanford University
Department of pediatrics
Stanford University Medical Center
Stanford, CA 94305-5208, USA

Giovanna Wagenaar, Central Development Lighting
Philips Lighting, Postbus 80020, 5600 JM Eindhoven

Huib van Weelden, dr., Onderzoeker
Academisch Ziekenhuis Utrecht afd. lichttherapie
Postbus 85500, 3508 GA Utrecht
Bijlagen

Bijlage 1. Afweging LED-licht vs TL-licht
Bijlage 2. Kostenspecificatie luchtbed
Bijlage 3. Kostenspecificatie gelmatras
Bijlage 4. Kostenspecificatie klamboe
Bijlage 5. Kostenspecificatie stretcher
Bijlage 6. Enquête
Bijlage 1. Afwegingen LED-licht vs TL-licht

TL-licht versus LED-licht

In dit verslag is tot nu toe uitgegaan van toepassing van LED-licht voor portable lichttherapie. Op het moment wordt echter op grote schaal TL-licht toegepast, vooral omdat dit makkelijk in te passen is in bestaande bestralingsapparaten (zonnenbanken en dergelijke), en omdat de technologie redelijk bewezen is. Optimaal is het echter niet, zoals al beschreven genereren de elektronica en de ballast die erbij komt kijken (de buizen zélf niet!), dermate veel warmte dat ze gekoeld moeten worden, en ze zijn vrij kwetsbaar. Dit maakt ze vrij ongeschikt voor een mobiele toepassing.

Tot een echte afweging is het echter in dit verslag nog niet gekomen, de specifieke know-how is niet aanwezig bij de schrijvers van dit verslag. Daarom is er contact gezocht met het bedrijf Philips Lighting in Eindhoven die duidelijk die gevraagde kennis wel heeft. Zij hebben op verzoek een gerichte afweging gemaakt tussen het gebruik van LED’s en TL-buizen.

Resultaat

TL-licht en LED-licht kunnen op een aantal vlakken vergeleken worden. Deze vlakken zijn: gewicht (van lampen + elektronica), grootte, koeling en prijs. Deze vergelijkingen worden gebaseerd op een gelijk uitgestraald vermogen (10 mW / cm² bij een golflengte van rond de 450 nm, met een bestraald oppervlak van 200 * 50 cm). De resultaten van Philips wijzen op het volgende.

Gewicht

Het gevraagde vermogen kan bereikt worden met ongeveer 400 LED’s. Deze, en de bijbehorende elektronica, wegen ongeveer 6 kg, en dan komt de koeling er nog bij. Een pessimistische schatting zou zijn dat het geheel op 8-9 kg uit zou komen.

Er kan ook gebruik worden gemaakt van 40 blauwe PL’s (compacte fluorescente lampen), en die wegen ongeveer 20 kg inclusief elektronica maar exclusief koeling. Aangezien de ballast en de elektronica een redelijke warmtepuntie hebben, zal de koeling flink moeten zijn. Reken dus in totaal op een kilo of 25.

Grootte

LED’s nemen véél minder ruimte in dan genoemde PL’s. Echter niet alleen vanwege de grootte van de lampen, maar ook (en vooral) vanwege de elektronica die erbij komt. Bij elke PL-unit hoort namelijk een ballast, dat
ongeveer anderhalf keer zo groot is als de lamp zelf. Een LED-lamp behoeft slechts – in verhouding tot de PL’s – veel compactere elektronica.

Koeling

Het onderscheid tussen LED’s en PL’s zit hier in wat nou precies de warmte genereert. De buizen zélf zijn niet zo warm, maar de elektronica die bij de PL’s hoort wordt wél vrij warm. Bij LED-licht is dit andersom, de lampjes zelf moeten gekoeld worden, en de elektronica juist weer niet. Netto is het verschil in warmteproductie niet erg groot, met dit verschil dat de ballast en elektronica van een PL niet *direct* bij de lampen zelf geplaatst hoeven te worden en dus op een wat grotere afstand staan van de te beschijnen huid. Per saldo zal de warmteproductie en de koeling bij de PL’s iets gunstiger uitvallen dan bij het LED-licht.

Prijs

De genoemde LED’s komen in deze aantallen neer op zo’n € 2000. Dit is een factor 2,5 lager dan in de schatting die eerder in het verslag naar voren kwam, voornamelijk omdat er veel minder LED’s nodig zijn dan aanvankelijk gedacht. Met meer LED’s zal ongetwijfeld een hoger vermogen bereikt kunnen worden, maar de vraag is of dit noodzakelijk is. Op basis van de waarde van 10 mW / cm² die ons gegeven is door het UMC in Utrecht, waarop men nu lichttherapie door middel van TL-buizen baseert, zijn er ‘slechts’ 400 LED’s nodig.

En dit is nu juist zo interessant voor de vergelijking met het TL-licht. Hoewel TL-buizen nog steeds in totaal wel goedkoper zullen zijn dan 400 LED’s (een bedrag voor de TL-buizen kan hier niet genoemd worden omdat dit te sterk afhangt van de aantallen), is het aandeel van de materiaalkosten ineens 30% gedaald ten opzichte van de totale kostprijs van een lichttherapie apparaat (in dit geval, de ‘stretcher’). Hierdoor is het puntje ‘prijs’ ineens een stuk minder zwaarwegend in het vergelijk van de twee lichtbronnen.

Conclusie

Zowel het TL-licht als het LED-licht heeft voor- en nadelen. Op het gebied van prijs en warmteproductie / koeling hebben PL’s een (gering) voordeel, waar de LED’s weer uitblinken in gebrek aan gewicht en grootte. Als men echter kijkt naar de toepassing waar beide lichtbronnen voor gebruikt gaan worden, namelijk een mobiele toepassing, is er hier één alternatief dat echt bruikbaar is. Dit is het gebruik van LED’s. Zaken als gewicht en grootte tellen in deze toepassing zeer zwaar mee, en de nadelen van LED’s op de andere vlakken zijn niet dermate groot (zoals hierboven bij elk punt uitgelicht) dat ze onoverkomelijk zijn.

Dit zegt uiteraard nog niets over een niet-mobiele toepassing. Voor een vaste lichtinstallatie bij een patiënt thuis telt een onderwerp als koeling natuurlijk veel
zwaarder, de patiënt moet immers dagelijks gebruik maken van die installatie, het hele jaar door. Het mobiele apparaat wordt slechts rond de 2 – 3 weken per jaar gebruikt (afhankelijk van de hoeveelheid vakantie en uitstapjes van de patiënt).

In het kader van dit onderzoek kan echter aanbevolen worden om bij het ontwikkelen van een mobiel lichttherapie apparaat uit te gaan van het gebruik van LED's.
Bijlage 2. Kostenspecificatie luchtbed

Stap 1: Ontwikkelingskosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Materiaal)keuze luchtbed</td>
<td>120</td>
</tr>
<tr>
<td>Structurele berekeningen</td>
<td>40</td>
</tr>
<tr>
<td>Koeling</td>
<td>80</td>
</tr>
<tr>
<td>Inbedding LED’s</td>
<td>80</td>
</tr>
<tr>
<td>Electronica schema’s</td>
<td>80</td>
</tr>
<tr>
<td>Betrokkenheid buiten ontwerp</td>
<td>40</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>440</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>44000</td>
</tr>
</tbody>
</table>

Stap 2: Materiaalkosten

<table>
<thead>
<tr>
<th>Product</th>
<th>Aantal</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED’s</td>
<td>8000</td>
<td>4800</td>
</tr>
<tr>
<td>Voeding</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Koeling</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Luchtbed</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>

Stap 3: Assemblagekosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matras maken</td>
<td>1</td>
</tr>
<tr>
<td>LEDs implementeren</td>
<td>5</td>
</tr>
<tr>
<td>Electronica aansluiten</td>
<td>1</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>7</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>350</td>
</tr>
</tbody>
</table>

Stap 4: Marktklaar maken

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veiligheidstest en certificering</td>
<td>40</td>
</tr>
<tr>
<td>Medische test</td>
<td>80</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>120</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>12000</td>
</tr>
</tbody>
</table>

Totale kosten luchtbed

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Totale kosten</th>
<th>Kosten per product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontwikkelkosten</td>
<td>44000</td>
<td>2200</td>
</tr>
<tr>
<td>Materiaalkosten</td>
<td>100000</td>
<td>5000</td>
</tr>
<tr>
<td>Assemblagekosten</td>
<td>7000</td>
<td>350</td>
</tr>
<tr>
<td>Marktklaar maken</td>
<td>12000</td>
<td>600</td>
</tr>
<tr>
<td>Totaal</td>
<td>163000.00</td>
<td>8150</td>
</tr>
</tbody>
</table>
Bijlage 3. Kostenspecificatie gelmatras

Stap 1: Ontwikkelingskosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Materiaal)keuze gelmatras</td>
<td>120</td>
</tr>
<tr>
<td>Structurele berekeningen</td>
<td>40</td>
</tr>
<tr>
<td>Koeling</td>
<td>80</td>
</tr>
<tr>
<td>Inbedding LED’s</td>
<td>80</td>
</tr>
<tr>
<td>Electronica schema’s</td>
<td>80</td>
</tr>
<tr>
<td>Betrokkenheid buiten ontwerp</td>
<td>40</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>440</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>44000</td>
</tr>
</tbody>
</table>

Stap 2: Materiaalkosten

<table>
<thead>
<tr>
<th>Product</th>
<th>Aantal</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED’s</td>
<td>8000</td>
<td>4800</td>
</tr>
<tr>
<td>Voeding</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Koeling</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Gelmatras</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>5150</td>
<td></td>
</tr>
</tbody>
</table>

Stap 3: Assemblagekosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matras maken</td>
<td>1</td>
</tr>
<tr>
<td>LEDs implementeren</td>
<td>5</td>
</tr>
<tr>
<td>Electronica aansluiten</td>
<td>1</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>7</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>350</td>
</tr>
</tbody>
</table>

Stap 4: Marktklaar maken

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veiligheidstest en certificering</td>
<td>40</td>
</tr>
<tr>
<td>Medische test</td>
<td>80</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>120</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>12000</td>
</tr>
</tbody>
</table>

Totale kosten gelmatras

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Totale kosten</th>
<th>Kosten per product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontwikkelkosten</td>
<td>44000</td>
<td>2200</td>
</tr>
<tr>
<td>Materiaalkosten</td>
<td>103000</td>
<td>5150</td>
</tr>
<tr>
<td>Assemblagekosten</td>
<td>7000</td>
<td>350</td>
</tr>
<tr>
<td>Marktklaar maken</td>
<td>12000</td>
<td>600</td>
</tr>
<tr>
<td>Totaal</td>
<td>166000</td>
<td>8300</td>
</tr>
</tbody>
</table>
Bijlage 4. Kostenspecificatie klamboe

Stap 1: Ontwikkelingskosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structurele berekeningen</td>
<td>20</td>
</tr>
<tr>
<td>Keuze doek en steunen</td>
<td>40</td>
</tr>
<tr>
<td>Inbedding LEDs</td>
<td>80</td>
</tr>
<tr>
<td>Electronica schema's</td>
<td>80</td>
</tr>
<tr>
<td>Betrokkenheid buiten ontwerp</td>
<td>40</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>26000</td>
</tr>
</tbody>
</table>

Stap 2: Materiaalkosten

<table>
<thead>
<tr>
<th>Product</th>
<th>Aantal</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>8000</td>
<td>4800</td>
</tr>
<tr>
<td>Voeding</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Doek</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Luchtbed</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Steunen</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Overige electronica</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>5050</td>
<td></td>
</tr>
</tbody>
</table>

Stap 3: Assemblagekosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bogen en doek assembleren</td>
<td>1</td>
</tr>
<tr>
<td>LEDs implementeren</td>
<td>5</td>
</tr>
<tr>
<td>Electronica aansluiten</td>
<td>1</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>7</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>350</td>
</tr>
</tbody>
</table>

Stap 4: Marktklaar maken

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veiligheids test en certificering</td>
<td>40</td>
</tr>
<tr>
<td>Medische test</td>
<td>80</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>120</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>12000</td>
</tr>
</tbody>
</table>

Totale kosten klamboe

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Totale kosten</th>
<th>Kosten per product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontwikkelkosten</td>
<td>26000</td>
<td>1300</td>
</tr>
<tr>
<td>Materiaalkosten</td>
<td>101000</td>
<td>5050</td>
</tr>
<tr>
<td>Assemblagekosten</td>
<td>7000</td>
<td>350</td>
</tr>
<tr>
<td>Marktklaar maken</td>
<td>12000</td>
<td>600</td>
</tr>
<tr>
<td>Totaal</td>
<td>146000</td>
<td>7300</td>
</tr>
</tbody>
</table>
Bijlage 5. Kostenspecificatie stretcher

Stap 1: Ontwikkelingskosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keuze stretcher</td>
<td>8</td>
</tr>
<tr>
<td>Productoptimalisatie</td>
<td>40</td>
</tr>
<tr>
<td>Inbedding LEDs</td>
<td>40</td>
</tr>
<tr>
<td>Electronica schema's</td>
<td>40</td>
</tr>
<tr>
<td>Betrokkenheid buiten ontwerp</td>
<td>40</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>168</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>16800</td>
</tr>
</tbody>
</table>

Stap 2: Materiaalkosten

<table>
<thead>
<tr>
<th>Product</th>
<th>Aantal</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>8000</td>
<td>4800</td>
</tr>
<tr>
<td>Voeding</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Overige electronica</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Stretchbed</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Overige extra onderdelen bed</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>5020</td>
<td></td>
</tr>
</tbody>
</table>

Stap 3: Assemblagekosten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs implementeren</td>
<td>5</td>
</tr>
<tr>
<td>Electronica aansluiten</td>
<td>1</td>
</tr>
<tr>
<td>Stretchbed ombouwen</td>
<td>1</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>7</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>350</td>
</tr>
</tbody>
</table>

Stap 4: Marktklaar maken

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Aantal uur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veiligheidstest en certificering</td>
<td>40</td>
</tr>
<tr>
<td>Medische test</td>
<td>80</td>
</tr>
<tr>
<td>Totaal aantal uur</td>
<td>120</td>
</tr>
<tr>
<td>Totale kosten</td>
<td>12000</td>
</tr>
</tbody>
</table>

Totale kosten stretchbed

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Totale kosten</th>
<th>Kosten per product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontwikkelkosten</td>
<td>16800</td>
<td>840</td>
</tr>
<tr>
<td>Materiaalkosten</td>
<td>100400</td>
<td>5020</td>
</tr>
<tr>
<td>Assemblagekosten</td>
<td>7000</td>
<td>350</td>
</tr>
<tr>
<td>Marktklaar maken</td>
<td>12000</td>
<td>600</td>
</tr>
<tr>
<td>Totaal</td>
<td>136200</td>
<td>6810</td>
</tr>
</tbody>
</table>
Bijlage 6. Enquête

Vragenlijst
De vragenlijst hieronder kunt u invullen door het gewenste antwoord te noteren op de daarvoor bestemde ruimte.

Behoefte
1. Is in uw situatie behoefte aan een nieuw mobiel lichttherapie apparaat?
 a. Ja

Producteisen
2. Wat is voor u de maximale grootte van het te ontwikkelen apparaat, indien het nog opgeklapt / nog niet geassembleerd is? Dit wil zeggen de grootte van het apparaat als u het vervoert.
 a. Ter grootte van een beautycase (ongeveer 30 cm x 15 cm x 20 cm, l x b x h)
 b. Ter grootte van een weekendtas (ongeveer 50 cm x 30 cm x 40 cm)
 c. Ter grootte van een reiskoffer (ongeveer 80 x 45 x 60 cm)
 d. Anders, namelijk (svp invullen): ………………………………………

3. Wat is voor u het maximale toegestane gewicht van het te ontwikkelen apparaat, zodat u het nog fatsoenlijk kan vervoeren?
 a. 1 – 5 kilogram
 b. 6 – 15 kilogram
 c. 16 – 25 kilogram
 d. Anders, namelijk (svp invullen): ………………………………………

4. Wat is voor u een acceptabele maximale opbouwtijd van het apparaat? Dit wil zeggen de tijd die het u kost om het apparaat vanuit het antwoord op vraag 2 uit te klappen / uit te bouwen tot het volwaardige apparaat.
 a. 1 – 5 minuten
 b. 6 – 10 minuten
 c. 11 – 15 minuten
 d. Anders, namelijk (svp invullen): ………………………………………
Vragen van medische aard

5. Van welk type van de ziekte van Crigler-Najjar is in uw situatie sprake?

 a. Type 1
 b. Type 2

6. Wat is de gemiddelde duur van de dagelijkse behandeling (svp invullen) van de ziekte door middel van lichttherapie in uw situatie?

7. Mocht het niet mogelijk zijn in het nieuwe apparaat een zo hoge lichtintensiteit te bereiken als bij uw gebruikelijke lichttherapie apparaat, hoeveel langer mag de behandeling met het nieuwe apparaat dan duren? Dit om toch het gewenste resultaat van de therapie te bereiken.

 a. 1 – 2 uur
 b. 3 – 4 uur
 c. 5 – 6 uur
 d. Anders, namelijk (svp invullen): ..

8. Hoe vindt in uw situatie de behandeling door middel van lichttherapie plaats? Is dit door middel van beschijning...

 a. … van boven de patiënt
 b. … van onder de patiënt
 c. … van beide kanten van de patiënt
 d. Anders, namelijk (svp invullen): ..

Vragen van financiële aard

9. Indien het nieuw te ontwikkelen apparaat voldoet aan de eisen zoals u die in bovenstaande vragen heeft aangegeven, hoeveel bent u dan bereid om uit te geven aan zo een apparaat?

 a. € 100 - € 500
 b. € 600 - € 1000
 c. € 1000 - € 2000
 d. € 2000 - € 5000
 e. € 5000 of meer

Overige vragen

10. Indien het te ontwikkelen apparaat geproduceerd gaat worden, is het dan voor u acceptabel dat er slechts een paar exemplaren op uitleenbasis in beheer van het Najjar fonds aanwezig zijn?

 a. Ja, dat is acceptabel
 b. Nee, het is wenselijk zelf zo een apparaat in bezet te hebben
11. Hebt u verder nog vragen en / of opmerkingen die van belang kunnen zijn in dit haalbaarheidsonderzoek of opmerkingen over deze enquête?

Rest ons u van harte te bedanken voor het invullen van deze vragenlijst!